Calculus of Variations

Table of Contents

1. Variation

  • If \(f\) is a function of independent variables, \(\delta f = \varepsilon\eta\) is the small perturbation of \(f\).
  • The variation can be formalized with the Fréchet derivative of \(f\).

2. Fundamental Lemma of the Calculus of Variations

2.1. Statement

2.1.1. Single Function

  • For a continuous function \(f\) on an open interval \((a,b)\), if \[ \int_{a}^{b} f(x)h(x)\, dx=0 \] for all compactly supported smooth functions \(h\) on \((a,b)\), then \[ f(x)\equiv 0 \] on the interval \((a,b)\).

2.1.2. Multiple Functions

  • For a tuple of continuous functions \((f_i)_{i=0}^n\) on an open interval \((a,b)\), if
    • \[ \int_a^b ( f_0(x) \, h(x) + f_1(x) \, h'(x) + \dots + f_n(x) \, h^{(n)}(x) ) \, \mathrm{d}x = 0 \]
    • for all compactly supported smooth function \(h\) on \((a,b)\),
  • Then there exists the tuple of continuously differentiable functions \((u_i)_{i=0}^{n-1}\) on \((a,b)\), such that
    • \[

      \begin{align*} f_0 &= u_0',\\ f_i &= u_{i-1} + u_i',\\ f_n &= u_{n-1}. \end{align*}

      \]

2.1.3. Vector-Valued Function

  • For a continuous vector-valued function \(f\colon (a,b) \to \mathbb{R}^d\),
  • It is identically the zero vector.

2.1.4. Multivariable Function

  • For a continuous multivariable function \(f\colon \Omega\subset \mathbb{R}^d \to \mathbb{R}\) on an open set \(\Omega\).
  • \(f\) is identically zero.

2.2. Properties

  • The restriction on \(h\) can be loosened up to a function that vanished at the endpoints, \(a\) and \(b\), since the lemma directly implies that.

3. Euler-Lagrange Equation

3.1. Equation

  • For a function \(L(q, \dot{q}, t)\),
    • \[ \frac{ \partial L }{ \partial q }- \frac{d}{dt}\frac{ \partial L }{ \partial \dot{q} } =0. \]
  • This implies that the function \(q\) which satisfies this equation is \[ \operatorname*{arg min}_{q} \left( \int_{a}^{b} L(x,q,q') \, dx \right). \]

3.2. Derivation

3.2.1. Formally

Let \(y(x) = y_0(x) + \varepsilon \eta(x)\). This allows the study the rate of change instead of the infinitesimal variation, which is a standard practice at studying differential calculus.

The local extremum is attained if \[ \frac{d}{d\varepsilon}\int_a^b L(x,y(x),y'(x))\, dx\bigg|_{\varepsilon=0} = 0. \]

\begin{align*} \frac{d}{d\varepsilon}\int_a^b L\, dx\bigg|_{\varepsilon=0} &= \int_a^b \frac{dL}{d\varepsilon}\bigg|_{\varepsilon=0}dx\\ &= \int_a^b \frac{\partial L}{\partial y}\frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'}\frac{dy'}{d\varepsilon}\bigg|_{\varepsilon=0} dx\\ &= \int_a^b \frac{\partial L}{\partial y}\eta + \frac{\partial L}{\partial y'}\eta' dx\\ &= \int_a^b \frac{\partial L}{\partial y}\eta\,dx + \frac{\partial L}{\partial y'}\eta\bigg|_a^b - \int_a^b \frac{d}{dx}\left(\frac{\partial L}{\partial y'}\right)\eta\,dx\\ &= \int_a^b \left(\frac{\partial L}{\partial y} - \frac{d}{dx}\frac{\partial L}{\partial y'}\right)\eta\,dx \end{align*}

3.2.2. Variation Notation

\begin{align*} 0&=\delta \int_{a}^{b} L \, dx \\ &=\int_{a}^{b} \delta L \, dx \\ &=\int_{a}^{b} \frac{ \partial L }{ \partial q } \delta q+\frac{ \partial L }{ \partial q' } \delta q' \, dx \\ &=\int_{a}^{b} \frac{ \partial L }{ \partial q } \delta q +\frac{ \partial L }{ \partial q' } \frac{ d }{ dx } (\delta q) \, dx \\ &=\int_{a}^{b} \frac{ \partial L }{ \partial q } \delta q\, dx + \frac{ \partial L }{ \partial q' } \delta q \,\Bigg|_{a}^{b}-\int_{a}^{b} \frac{ d }{ dx }\left( \frac{ \partial L }{ \partial q' } \right) \delta q \, dx \\ &=\int_{a}^{b} \left( \frac{ \partial L }{ \partial q } - \frac{ d }{ dx } \frac{ \partial L }{ \partial q' } \right) \delta q \, dx \end{align*}

By the fundamental lemma of the calculus of variations, \[ \frac{ \partial L }{ \partial q }- \frac{d}{dx}\frac{ \partial L }{ \partial q' } =0.\quad\square \]

3.3. Properties

  • It implicitly contains \[ \frac{dq}{dx} = q'. \]
  • Which together with the Euler-Lagrange equation becomes the Hanilton's equations via Legendre transformation.
    • \[ p := \frac{\partial L}{\partial \dot{q}} \]
    • \[ \dot{q} \leadsto \frac{\partial H}{\partial p} \]
  • Given a functional of the form: \[ \int_a^b L(x, f(x), f'(x))\,dx \]
    • \(L\) can be as well be considered as a generalized Lagrangian.1

4. Euler-Poisson Equation

  • If \(S\) depends on higher-derivatives of \(y(x)\): \[ S = \int_a^b f(x, y(x), y'(x), \dots, y^{(n)}(x))dx, \]
  • and it attains the maximum with \(y(x)\), then \[ \frac{\partial f}{\partial y} - \frac{d}{dx}\left(\frac{\partial f}{\partial y'}\right) + \cdots + (-1)^n\frac{d^n}{dx^n}\left(\frac{\partial f}{\partial y^{(n)}}\right) = 0. \]
  • See the fundamental lemma for fundamental lemma for multiple functions

5. Beltrami's Identity

  • If \(L\) does not depend on \(x\), the Euler-Lagrange equation simplifies to \[ L-y'\frac{\partial L}{\partial y'} = C \] where \(C\) is a constant.
    • Multiply \(y'\) to the Euler-Lagrange equation, and integrate with respect to \(x\).
  • The left hand side is the Legendre transformation of \(L\) with respect to \(y'(x)\).
  • This leads to the Hamiltonian mechanics.

6. Reference

Footnotes:

Created: 2025-05-06 Tue 23:34